Unbiased proteomic analysis reveals dietary choline deficiency induces changes to neurodegeneration-relevant pathways in the 3xTg-AD mouse model of Alzheimer's disease

Savannah Tallino^{1,2}, Annika Decker¹, Nikhil Dave¹, Jessica Sandler³, Timothy Karr³, Wendy Winslow¹, Ramon Velazquez^{1,2}

¹ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, ASU, Tempe, AZ; ²School of Life Sciences, ASU, Tempe, AZ; ³Biosciences Mass Spectrometry Facility, Biodesign Institute, ASU, Tempe, AZ

3 of 3

0.0266

1.84

INTRODUCTION

Alzheimer's Disease (AD) is the most common cause of dementia.

Today

By 2050

More than 6 million Americans have AD.

AD costs the US \$355 billion annually.

More than 11 million Americans provide unpaid care, valued at nearly \$257 billion.

~13 million patients projected in the US by 2050 with projected annual costs up to ~\$1.1 trillion

(https://www.alz.org/alzheimers dementia/facts-figures)

Pathological Characteristics of AD

Extra-neuronal plaques of Amyloid Beta (Aβ) Intra-neuronal neurofibrillary tangles (NFTs)

of hyperphosphorylated tau Neuroinflammation and cell death

 $A\beta_{40}$ and $A\beta_{42}$ are the main $A\beta$ isoforms that combine to form oligomers and insoluble plaques.

Eventually, neurons degenerate, leading to **memory loss**, decline in executive functioning, and changes to mood, behavior and personality.

There is no cure.

AD Pathology and Histology Image from Winblad et al – Lancet Neurol 2016; 15:455–532 Soluble and insoluble A β_{40-42} : Yang, et al – *J Neurosci* 2017; 37(1):152-163

3xTg-AD and

C57129 (NonTg)

Ch- Diet

Envigo TD.110617

0 mg/kg

Isolated

protein

There is an urgent need for mechanistic insight into modifiable environmental risk factors to offset disease.

Choline plays an integral role in diverse neurodegeneration-relevant pathways such as acetylcholine biosynthesis, myelination, synapse formation, neurogenesis, and epigenetic modification.

a variety of foods. Adequate intake values were established in

TRENDS in Endocrinology & Metabolism

NOH

The dietary nutrient

choline is found in

NOH

1998.

N OH

Recent reports

suggest 90% of

Americans do not

meet these

requirements,

which may affect

cognition.

Choline metabolism: Jiang, West and Caudill - Trends Endocrinol Metab 2014; 25(5):263-73 Adequate intake in Americans: Wallace et al - Nutr. Today 2018; 53:240-253 Inadequate choline and cognition: Liu et al – Behav Neurology 2021; 2021(296225):1-11 Dietary choline sources from Table 2 of Zeisal and da Costa - Nutr Rev. 2009; 67(11):615-23

> Inadequate dietary choline may contribute to an increase in AD pathology.

Choline deficiency induced protein alterations in 3xTg-AD mice

RESULTS

Tau and MAP protein, tubulin-binding repeat

348 proteins downregulated **Count in Functional Enrichment Analysis Description** Network Gene Ontology: Biological Process Mitochondrial RNA processing 3 of 13 0.0342 Cellular response to insulin-like growth factor stimulus Gene Ontology: Biological Process 3 of 14 0.0381 Gene Ontology: Biological Process 0.038 4 of 32 Negative regulation of blood vessel endothelial cell migration 0.94 7 of 70 0.0035 Gene Ontology: Molecular Function Scaffold protein binding

Protein Domains (Pfam Database)

143 proteins upregulated

Description	Functional Enrichment Analysis	Count in Network	Strength	FDR
Intermediate filament organization	Gene Ontology: Biological Process	4 of 23	1.43	0.0054
Intermediate filament cytoskeleton organization	Gene Ontology: Biological Process	5 of 41	1.27	0.0031
Cellular response to calcium ion	Gene Ontology: Biological Process	5 of 66	1.07	0.0129
Axon ensheathment	Gene Ontology: Biological Process	5 of 97	0.9	0.0485
Calmodulin binding	Gene Ontology: Molecular Function	8 of 183	0.83	0.0031
Cytoskeletal protein binding	Gene Ontology: Molecular Function	18 of 877	0.5	0.0021
Myelin proteolipid protein PLP, conserved site	Protein Domains & Features (InterPro Database)	2 of 3	2.01	0.0268
Myelin proteolipid protein PLP	Protein Domains & Features (InterPro Database)	2 of 3	2.01	0.0268

Choline deficiency also induced protein alterations in NonTg mice

109 proteins downregulated

INCLWOIK	Description	Functional Enrichment Analysis	Count in Network	Strength	FDR
Generation of neurons Gene Ontology: Biological Process 20 of 1538 0.44 0.0454	Generation of neurons	Gene Ontology: Biological Process	20 of 1538	0.44	0.0454
Nervous system development Gene Ontology: Biological Process 25 of 2181 0.39 0.0454	Nervous system development	Gene Ontology: Biological Process	25 of 2181	0.39	0.0454
Metabolism Reactome Pathway Analysis 15 of 1346 0.38 0.037	Metabolism	Reactome Pathway Analysis	15 of 1346	0.38	0.037
Metabolic pathways KEGG Pathway Analysis 16 of 1296 0.42 0.0438	Metabolic pathways	KEGG Pathway Analysis	16 of 1296	0.42	0.0438

93 proteins upregulated

Description	Functional Enrichment Analysis	Count in Network	Strength	FDR
Axon ensheathment	Gene Ontology: Biological Process	4 of 97	1.02	0.0451
Autophagy	Gene Ontology: Biological Process	6 of 192	0.9	0.0278
Exocytosis	Gene Ontology: Biological Process	6 of 202	0.88	0.0278
Vesicle-mediated transport	Gene Ontology: Biological Process	17 of 1020	0.63	0.001
Structural constituent of myelin sheath	Gene Ontology: Molecular Function	2 of 10	1.7	0.0184

3xTg-AD Mouse Model **Behavior phenotype Human mutations** Aβ plaques Tau pathology Neurofibrillary tangles **APPSw** Aβ plaques begin at 6 Cognitive impairment at PSEN1M146V widespread by 12 months, widespread by 6 months of age. MAPTP301L 12 months. months. 3xTg-AD Mode Genetics and Behavior: Alzheimer's Forum Research Models, 3xTg (https://www.alzforum.org/research-models/3xtg) Development of plaques: Oddo et al - Neuron 2003; 39:409-421 Development of tau pathology: Oh et al – *Int J Alz Dis* 2010; 2010(78102):1-25

Envigo TD.180228

2 mg/kg

Label-free quantification (LFQ) was performed using high-resolution mass spectrometry.

Determines differentially abundant proteins across experimental groups.

Gene Set Enrichment Analysis (GSEA; hypergeometric test) using STRING (v11.0)

- 1. Analyzed number of proteins in each network annotated with a particular pathway term.
- 2. Measured the strength, or how large the enrichment effect was, using:
- the number of proteins in the network that were annotated with the term, and
- the number of expected proteins annotated with this term in random network of the same
- . Addressed significance of enrichment with Benjamini-Hochberg correction for multiple comparisons.

15000 THP Ctx Hp Ctx 10000-<u>ਵ</u>300− 申 ChN Ch- ChN Ch-NonTg 3xTg-AD ChN Ch- ChN Ch-ChN Ch- ChN Ch-NonTg 3xTg-AD

☐ NonTg ChN ■ NonTg Ch-3xTg-AD ChN 3xTg-AD Ch-

- (A) Choline deficiency leads to weight gain in NonTg and 3xTg-AD mice: % weight change from baseline.
- (B) Choline deficiency impairs glucose tolerance in NonTg and 3xTg-AD mice: Glucose levels after 16 hrs fasting and subsequent 2.0g/kg glucose injection. (C) Choline deficiency impairs motor function in NonTg and 3xTg-AD mice: Ch- mice show decreased time to fall in the rotarod task.
- (D-F) Choline deficiency elevates soluble, oligomeric, and insoluble Aβ₄₀₋₄₂: (D) Soluble Aβ₄₀₋₄₂ levels in Cortex (Ctx) and Hippocampus (Hp) of 3xTg-AD mice. (E) Toxic soluble oligomer levels in the Hp and Ctx of 3xTg-AD mice. (F) Insoluble $A\beta_{40-42}$ levels in the Hp and Ctx of 3xTg-AD mice.

Data are means ± SE. *p<0.05, **p<0.01, ***p<0.001, ****p<0.001.

CONCLUSIONS

Collectively, these results highlight that inadequate dietary choline alters AD-relevant biochemical pathways in the hippocampus of NonTg mice as well as in 3xTg-AD mice and may increase pathologies seen in AD.

Scan the QR code to read more about this project and other ongoing research within the Velazquez Lab of Neurodegenerative Research!

